Math 31 - Homework 3

Due Friday, July 13

Easy

1. Let G be a group of order $p q$, where p and q are prime numbers. Show that every proper subgroup of G is cyclic.
2. We proved in class that every subgroup of a cyclic group is cyclic. The following statement is almost the converse of this:
"Let G be a group. If every proper subgroup of G is cyclic, then G is cyclic."
Find a counterexample to the above statement.
3. [Herstein, Section $2.4 \# 1$] Verify that the relation \sim is an equivalence relation on the set S given.
(a) $S=\mathbb{R}$, and $a \sim b$ if $a-b$ is rational.
(b) $S=\mathbb{C}$, and $a \sim b$ if $|a|=|b|$.
(c) $S=\{$ straight lines in the plane $\}$, and $a \sim b$ if a, b are parallel.
(d) $S=\{$ all people $\}$, and $a \sim b$ if they have the same color eyes.
4. [Herstein, Section $2.4 \# 2$] The relation \sim on the real numbers \mathbb{R} defined by $a \sim b$ if both $a>b$ and $b>a$ is not an equivalence relation. Why not? What properties of an equivalence relation does it satisfy?

Medium

5. Let r and s be positive integers, and define

$$
H=\{n r+m s: n, m \in \mathbb{Z}\} .
$$

(a) Show that H is a subgroup of \mathbb{Z}.
(b) We saw in class that every subgroup of \mathbb{Z} is cyclic. Therefore, $H=\langle d\rangle$ for some $d \in \mathbb{Z}$. What is this integer d ? Prove that the d you've found is in fact a generator for H.
6. Let a and b be elements of a group G. Show that if $a b$ has finite order n, then $b a$ also has order n.
7. Let H be a subgroup of a group G and let $g \in G$. Define a one-to-one map of H onto $H g$. Prove that your map is one-to-one and onto.
8. We will see in class that if p is a prime number, then the cyclic group \mathbb{Z}_{p} has no proper subgroups as a consequence of Lagrange's theorem. This problem will have you investigate a "converse" to this result.
(a) [Herstein, Section 2.3 \#14] If G is a group which has no proper subgroups, prove that G must be cyclic.
(b) [Herstein, Section 2.3 \#15] Extend the result of (a) by showing that if G has no proper subgroups, then G is not only cyclic, but

$$
|G|=p
$$

for some prime number p.

Hard

9. Let $G=\langle a\rangle$ be a cyclic group of order n. Prove that for any positive divisor m of n, G has exactly one subgroup of order m. [Hint: You may want to use the formula that relates $\left|a^{j}\right|$ to $|a|$.]
10. [Herstein, Section $2.4 \# 8]$ Let G be a group with $H \leq G$, and for $a \in G$ define

$$
a H a^{-1}=\left\{a h a^{-1}: h \in H\right\} .
$$

If every right coset of H in G is a left coset of H in G, prove that $a H a^{-1}=H$ for all $a \in G$. [Note: To say that a left coset $a H$ is also a right coset does not necessarily mean that $a H=H a$. It only means that $a H=H b$ for some $b \in G$. However, you will be able to show that $H b=H a$ in this case.]

